Übungen zur Mathe III für Physiker

Prof.Dr.P.Pickl

Blatt 9

Aufgabe 1: Sei $f: \mathbb{C} \to \mathbb{C}$ ganz und nicht konstant. Beweisen Sie, dass dann $f(\mathbb{C})$ dicht in \mathbb{C} liegt, d.h. dass es zu jedem $w \in \mathbb{C}$ und jedem $\varepsilon > 0$ ein $z \in \mathbb{C}$ gibt, sodass $|f(z) - w| < \varepsilon!$

Hinweis: Führen Sie einen Widerspruchsbeweis, indem Sie Liouvilles Satz auf eine geeignete Funktion anwenden.

Aufgabe 2: Sei $\alpha \geq 1$. Geben Sie die größte offene Kreisscheibe an, auf der die Laurentreihe $\sum_{n=-\infty}^{\infty} \frac{(1+z)^n}{\alpha^n+1}$ konvergiert!

Aufgabe 3: Entwickeln Sie $f(z) = \frac{1}{(z+1)(z+2)}$ in folgende Laurentreihen:

- 1. um $z_0 = 0$, konvergent in der Kreisscheibe $K_{(0,1)}(0)$;
- 2. um $z_0 = 0$, konvergent in der Kreisscheibe $K_{(1,2)}(0)$;
- 3. um $z_0 = 1$, konvergent in der Kreisscheibe $K_{(3,\infty)}(1)$.

Hierbei:
$$K_{(r,R)}(z_0) = \{z \in \mathbb{C} : r < |z - z_0| < R\}.$$

Aufgabe 4: Gegeben sei die Potenzreihe $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$. Diese konvergiere für ein $z_1 \neq 0$.

- 1. Sei $r \in \mathbb{R}^+$. Zeigen Sie, dass f(z) für alle $z \in \mathbb{C}$ mit $|z| \leq r < |z_1|$ absolut und gleichmäßig konvergiert. *Hinweis*: Suchen Sie jeweils eine Majorante für die Summanden der Potenzreihe.
- 2. Bestimmen Sie den Konvergenzradius von f(z), also $R \in \mathbb{R}^+$ mit $R = \sup\{r \in \mathbb{R} : f(z) \text{ konvergent für } |z| < r\}$. Hinweis: Finden Sie eine geschickte Abschätzung für die Summanden der Potenzreihe um letztere mit der geometrischen Reihe zu vergleichen.